label.py
¶
Wrapper module to classify & label channel confluences using OpenCL.
Requires PyOpenCL.
Imports streamlines module pocl.py. Imports functions from streamlines module useful.py.
-
streamlines.label.
label_confluences
(cl_state, info, data, verbose)¶ Label channel confluences.
Parameters: - cl_state (obj) –
- info (obj) –
- data (obj) –
- verbose (bool) –
Code¶
"""
---------------------------------------------------------------------
Wrapper module to classify & label channel confluences using `OpenCL`_.
Requires `PyOpenCL`_.
Imports streamlines module :doc:`pocl`.
Imports functions from streamlines module :doc:`useful`.
---------------------------------------------------------------------
.. _OpenCL: https://www.khronos.org/opencl
.. _PyOpenCL: https://documen.tician.de/pyopencl/index.html
"""
import pyopencl as cl
import pyopencl.array
import numpy as np
import os
os.environ['PYTHONUNBUFFERED']='True'
import warnings
from streamlines import pocl
from streamlines.useful import vprint, pick_seeds, check_sizes
__all__ = ['label_confluences']
pdebug = print
def label_confluences( cl_state, info, data, verbose ):
"""
Label channel confluences.
Args:
cl_state (obj):
info (obj):
data (obj):
verbose (bool):
"""
vprint(verbose,'Labeling confluences...')
# Prepare CL essentials
cl_state.kernel_source \
= pocl.read_kernel_source(cl_state.src_path,['essentials.cl','updatetraj.cl',
'label.cl'])
# Check all thin channel pixels
pad = info.pad_width
is_thinchannel = info.is_thinchannel
seed_point_array = pick_seeds(mask=data.mask_array, map=data.mapping_array,
flag=is_thinchannel, pad=pad)
# Prepare memory, buffers
array_dict = { 'seed_point': {'array': seed_point_array, 'rwf': 'RO'},
'mask': {'array': data.mask_array, 'rwf': 'RO'},
'uv': {'array': data.uv_array, 'rwf': 'RO'},
'dn_slt': {'array': data.slt_array[:,:,0], 'rwf': 'RO'},
'mapping': {'array': data.mapping_array, 'rwf': 'RW'},
'count': {'array': data.count_array, 'rwf': 'RW'},
'link': {'array': data.link_array, 'rwf': 'RW'} }
info.n_seed_points = seed_point_array.shape[0]
if ( info.n_seed_points==0 ):
# Flag an error - empty seeds list
return False
check_sizes(info.nx_padded,info.ny_padded, array_dict)
# Do integrations on the GPU
cl_state.kernel_fn = 'label_confluences'
pocl.gpu_compute(cl_state, info, array_dict, info.verbose)
# Done
vprint(verbose,'...done')
# Flag all went well
return True